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This paper reviews the symmetrizability of systems of conservation laws which possess 
entropy functions. Symmetric formulations in conservation form for the equations of gas 
dynamics are presented. 

INTRODUCTION 

In this paper we consider systems of conservation laws which possess an entropy 
function. Such equations of mathematical physics can be written in a symmetric form 
which retains the conservation properties of the system. Among the researchers who 
have investigated this class of equations are Godunov [2], Friedrichs and Lax 131, 
and more recently Mock [6] and Harten and Lax [4]. 

The symmetrizability of systems of conservation laws with entropy may and 
should be utilized in the design and analysis of numerical solutions to such problems. 
For example, it offers the possibility of locally linearizing the equations in a way 
which preserves the hyperbolicity and conservation properties (see Roe [7,8], the 
next section, and [5]). Another example is the use of the symmetrizibility property to 
rigorously analyze splitting algorithms for the Navier-Stokes equations by Abarbanel 
and Gottlieb (see [ 1 I). Of particular interest is the possibility of improving the 
structure of iteration matrices in direct Newton-iteration methods to the solution of 
the steady state equations. 

The goal of this paper is to review the general structure of systems of conservation 
laws with entropy, and in particular to present symmetric formulations of the 
equations of gas dynamics. It is hoped that this information will be of service to the 
designers of numerical approximations of this important class of equations. 
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1. SYSTEMS OF CONSERVATION LAWS WITH ENTROPY 

In this paper we consider systems of hyperbolic conservation laws of the form 

u, + f’ f’(u),, E u, + divf(u) = 0. 
i=l 

(l.la) 

Here u(x, t) is an m-column vector of unknowns,f’(u) is a vector-valued function of 
m components, x = (xi ,..., xd), and f = (f’,...,fd). We can write (l.la) in the matrix 
form 

24, + jJ A’(u) UXi = 0, 
i=l 

where 

A’(u) =f ;. 

Equation (1.1) is called hyperbolic if the matrix 

(l.lb) 

(l.lc) 

$, @iA’ 

has real eigenvalues and a complete set of eigenvectors for all real oi. 
A scalar function U(U) is an entropy function for (1.1) if 

(i) The function U satisfies 

U&=F’,, i = l,..., d, 

(1.2) 

(1.3) 

where F’(u) is some scalar function called entropy flux in the xi direction. 
(ii) The function U is a convex function of u. 

It follows from (1.3), upon multiplication of (1. la) by U,, that every smooth 
solution of (1.1) also satisfies 

(1.4) 

where P = (F’,..., Fd). 
A system of equations 

Pu, + i BiU,[ = 0, 
i=l 

(l-5) 

is called symmetric hyperbolic if P and all B’ are symmetric matrices, and if P is 
positive definite. 
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The symmetrization of (1.1) will be accomplished by introducing new dependent 
variables u in place of u by setting u = U(V), i.e., 

(1.6a) 

Thus (1.1) becomes of form (1.5) with 

P=u,, B’ =f 1. (1.6b) 

The symmetry of the matrices U, and f 1 implies that u and f i are gradients with 
respect to v, i.e., there exist scalar functions q(u), ri(y) such that 

4” = UT, (1.7a) 

r; = (f’)T, (1.7b) 

where superscript T denotes transpose. The positive definiteness of u,, is equivalent to 
the convexity of q(u). 

Note that the convexity of q implies that the mapping u + q, is one-to-one, so that 
(1.7a) can be inverted, i.e., u can be regarded as a function of U. 

THEOREM 1.1 (Godunov). Suppose (1.1) can be_ symmetrized by introducing new 
variables u, i.e., (1.7) holds, where q is a convex function of u. Then (1.1) has an 
entropy function U(u) given by 

U(u) = UTU - q(u), (1.8a) 

with entropy fluxes F’(U) 
F’(u) = dfi)= 2, - ri(u). (1.8b) 

ProoJ Differentiate (1.8a) with respect to U; using (1.7a), we get 

u, = UT + UTU, - q”u, = UT. 

Similarly, from (1.8b) and (1.7b) we get 

FL = u’f L+ (f’)’ u, - rluu = u’f L. 

Relation (1.3) follows. 

(1.9) 

(1.10) 

To prove the convexity of U, we show that U is the Legendre transform of q: 

U(u) = max, [u’u - q(u)]. (1.11) 

For, by the convexity of q, the right side has a unique maximum; at the maximum 
point, the u derivative must vanish; this gives relation (1.7a). This proves that (1.11) 
is the same as (1.8a). Equation (1.11) represents U as the maximum of linear 
functions; this proves that U is convex. 
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Conversely: 

THEOREM 1.2 (Mock). Suppose U(u) is an entropy function for (1.1); then 

VT = u,, (1.12) 

symmetrizes (1.1). 

Proof. The convexity of U implies that the mapping u + U, is one-to-one, hence 
(1.12) defines u as a function of u. We define now q and ri by 

q(u) = v=u - U(u), (1.13a) 

ri(v) = v’f’ -F’(u), (1.13b) 

where F’ are the entropy fluxes. Differentiating (1.13a) with respect to v, and using 
(1.12) gives 

qv=UT+VTU,,-uUUU1,=u? 

Similarly, from (l.l3b), (1.12), and (1.3) we get 

r\ = (j’i)T + vTfiu, - F’,u, = df’)‘. 

These formulas show that (1.7a) and (1.7b) hold; therefore u, andf,. are symmetric. 
To show that u, is positive, we have to verify that q is convex. This can be done, as 
before, by observing that, because of the convexity of U, it follows from (1.13a) and 
(1.12) that q is the Legendre transform of U. (For more details see [4].) 

We note the following relations: 
(i) The symmetric positive definite matrix u, simultaneously symmetrizes all 

A’ =f I from the right, i.e., 
A iz(, = B’ = symmetric. (1.14a) 

(ii) The symmetric positive definite matrix u, simultaneously symmetrizes all 
A’ from the left. 

v,Ai = v,Biv, = symmetric. (1.14b) 

(iii) The similarity transformation 

(v,)“* Ai(v, = (vu)“’ Bi(vJ1’* = symmetric (1.14c) 

simultaneously transforms all A’ into symmetric matrices. 
We say that the system (1.1) can be linearized in the sense of Roe if for all u, and 

u, there exist matrices A’(u,, u2) such that for i= l,..., d 

(9 fi(u2) -f’(u,) =A’@, , uz)(u2 - u,), (1.15a) 

(ii) A’(u, u) -f:(u) E A’(u), (1.15b) 
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and 

(iii) the matrix 

(Llk) 

has real eigenvalues and a complete set of eigenvectors for all real oi (see [7,8]). 

THEOREM 1.3 (Harten-Lax). Suppose (1.1) has un entropy function; then (1.1) 
can be linearized in the sense of Roe. 

ProoJ Let u* = U,,. Then by Theorem 1.2, the mapping u + v is one-to-one, v, is 
a symmetric positive definitive matrix, and the f i are symmetric. Let V, = u(uI), 
v2 = u(uJ and define 

v(e) = u, + B(v, - v,). 

Then 

Denote 

then 

B’(u,, u,) = jlf#@), de; 
0 

f’(u2) -f’W = w4 9 %)(h - o,), 

where B’(u,, I+) is symmetric. Now let 

u(v) = Ul + tl@* - %I’ 

Then 

(1.16a) 

(1.16b) 

Denote 

Vt - u1= f U”wI)) dr 
I 

d”d,, j1 ~,(u(rt)) dr(u2 - ~1). (1.17a) 
0 

then 

u2 - 01 = WI, u2)@2 - u,>, (1.17b) 

where P(ul , u2) is symmetric positive definite. Combining (1.16b) and (l.l7b), we get 

fi(U*) -f’(u,) = -4 +19 u,>(u, - UJ (1.18) 

581/49/l I I 
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where 

For U, = U, = U, we get that ~(8) = V(U), u(q) = U, and B(u,, z+) =ft,(u(u)), 
P(u,, u2) = u,(u). Hence 

A’(#, u) = B’(u, u) P’(u, u) =fl(u(u)) u,(u) =fl(u) = A’(u). (1.20a) 

Denote 

Then 

PO4 9 &)I I’* C[P(u, ) u,)] -l’* 

= [P(u~, u2)]*/* i op’(u,, u2)][P(uI, u2)]“* = synmetric. (1.20b) 
i=l 

Thus C is similar to a symmetric matrix and therefore has real eigenvalues and a 
complete set of eigenvectors for all real 0,. 

2. EULER EQUATIONS OF GAS DYNAMICS 

In this section we consider the Euler equations for polytropic gas in conservation 
form: 

where 

ut + Lf”(~)lx + [fYG41y = 0, (2.la) 

[f”(u)]= = Id;*{ G29 (Y- 1) k(UlU4 - $4:) + f(3 - y) 24, u:, UI u* uj, 

~2IY~l u4 - 40 - w4 + u3lh (2.lb) 

LfYWT = u;*( U:~g,U1U*Ug,(Y-1)~I(~,U4-fu:)+4(3-y)u,u:, 

U,IYUl u4 - 4(Y - w: + 4)lh (2. lc) 

where p is the density, E is the total energy, m and n are the momentum in the x 
direction and y direction, respectively, and y > 1 is the adiabatic exponent. 
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The Jacobian matrix A” =f f equals 

-u;’ 

- 0 -u; 0 0 

183 -Y) 4 (y-3w* (Y- lMu3 (1 -r>u: 
+ 1(1 - Y) 41 u, 

ul"2u3 -u,u3 2 2 -u,u2 0 

lP,u4+(l-Y) [-~,",+~(Y-l) (Y-1)u,u2u3 --Y":u2 

* (4 + a42 * (34 + u:)]u, . 
!a) 

and has eigenvalues 

a:=u;‘{U,- [y(y- l)]“’ [u&--f(U;+U:)]“2}; a;=a;=z$u,; 

a:= u;‘(u, + [y(y- l)]“’ [U,U, - ;(u; + u:)]“2}. (2.2b) 

The Jacobian matrix AY = f: equals 

0 0 -2l: 0 

UlUZU3 
2 

-u1u3 
2 

-UIU2 0 

-Up 
Ul(3 - Y) 4 (Y- w:u2 (Y-33)+43 (1 -Y>4 

+ 31 -Y) 4) 

[YU,% + (1 -Y) (Y-1)u,u2u3 [-I% 4 + ttr - 1) -YG, 

- (4 +4>1u3 * (324 + u:)]u, 

and has eigenvalues 

a;=u;‘{U3-[y(y-l)]“* [U,U,-f(U:+U:)]“?}; a:=a:=u;‘u,; 

a: = u;‘{u, + [y(y - I)]“’ [u,u, - f(u: + Id:)]“‘}. (2.3b) 

It is well known that (2.1) implies that 

s = log[PpY] = log{(u;Y-‘/(y - l))[U,Ud - t<u: + U:)], 

(where 

(2.4a) 

P = (y - 1)u;‘[u, ui - j<u: + U:)] (2.4b) 

is the pressure) satisfies 

Ul(dS/df) = u,s, + u,s, + u3sy = 0 

for all smooth u(x, t), i.e., S is constant along streamlines. 
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u,h(S),+u,h(S),+u,h(S),=u,~(S)~=O (2.5a) 

for all differentiable functions h(S). Here i; denotes derivative with respect to S. 
Multiplying the continuity equation in (2.1) 

Ulf + %x + u3y - -0 (2.5b) 

by -h(S) and subtracting (2.5a), we obtain the entropy equation (1.4) for (2.1). 

h Wit + I-% W)lx + b3W)ly = 0. (2.6a) 

Here 

U(u) = -24, h(S), F(u) = -2.Q h(S), P(u) = -u3 h(S). (2.6b) 

Then uT = (v,, u2, u3, u,) in (1.12) becomes 

UT = - (Y- l)[~(~)/Pl{~, + [P/O- wGY~(~)-y- 11, -4, -43, Ul}. (2.7) 

and 

where 

D= 

v, = [(y - 1)/P]2~,I@) . D (2.8a) 

4q4 + 4/Y -41[h?2(l -RI -!72[tq*(l -RI $q2(1 -R) - 
-R ($4’ - cp +Rc2,] +Rc:] -&U/Y -RI 

--4,[+q2(l --RI q:(l --RI •t 6th qlqA1 -RI -qlU -RI 
tRc:] 

-qJfq*(l --RI q1q2(1 -R) q:(l -RI + d/y -M --RI 
tRC:] 

fq’(1 -R) 
-C~WY -RI -q,(l -RI -M -RI 1-R 

(2.8b) 

Here P is the pressure from (2.4b), ci = [JJ/(~ - l)] P/U,, q1 = u,/u,, q2 = ~3/~2, 
q2 = q: t qz, and R = I@)/@). 

We show now that the symmetric matrix D is positive definite if and only if 

R = h@)/h(S) < l/y. (2.k) 

We do so by showing that the determinants of the major blocks of D are positive if 
and only if (2.8~) holds. 
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11=~*~=(~l~--R)(~q2-cc2,)2+q2[f(y-1)q2+c2,]/y>0, M (2.9a) 

M2* = det [::I :I:] (2.9b) 

= tc2xlY2N(1 - WNfq2 - c’*)’ + (y + 1) c?&:] + c2,q: + i(y - 1) q4} > 0, 

= (c4,/y2)[(1 -Ry) c:(q* + c:/y) + (1 -R) q4/4] > 0, (2.9c) 

M,, = det(D) = (c8,/y4)(y - l)(l - Ry) > 0. (2.9d) 

We note that for the physical entropy (2.4), h(S) = S, h’(S) = 1 and R = 0. It 
follows from (2.8~) that u, is positive definite in this case. 

Next we derive specific formulae for the family of functions h(S) defined with 
respect to a parameter a: 

h(S) = jypa + Y) = K(@ - Y)m + Y)* (2.10a) 

In this case h’(S) = [K/(a + r)] eS”“tY’; R = @)/I;(S) = l/(a + y). It follows from 
(2.8) that v, is positive definite if and only if 

a > 0, K > 0. (2. lob) 

We note that det(v,) = 0 if and only if a = 0. 
Substituting (2.10a) with K = ((a + y)/(y - 1)) for h(S) in (2.7), we get 

UT =_~I/C~~+Y)-~~;Y/(U+Y) {u, + [P/(y - l)](a - I), -u2, -u3, u,}. (2.11) 

Denote: 
WS-?I, (2.12a) 

P = [(y - ~>/all~, w4 - 4(4 + 41; (2.12b) 

then u(u) ZE u(-w) is given by 
24, =p=w4 (Y+a-*)l(Y-l)~(l-a-Y)/(Y-l) , (2.13a) 

u*/u, = 4, = -w&v, t (2.13b) 

u,/u, =q*=-w3/w4, (2.13~) 

(y - 1)[u,u, - f(U: + u:)]/u, =p = w;*pp. (2.13d) 

We turn now to express the fluxes fX and f y in (2.1) in terms of the dependent 
variable u. 
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p(v) is given in (2.13a). Wf observe that the fluxes f”(u) and fy(u) are homogeneous 
functions of v of degree s, i.e. 

fW) = B”f”@)v f’W) = p”f’(u) (2.15a) 

for all scalar j?, where 

s=-(a+y)/(y- 1). (2.15b) 

We denote 

k, = (1 - a - y)/a; k, = (a - YMY - 1). 

The Jacobian f G = -f “, takes the form f z = - ~,u-‘w;~ . 8x where 

(2.16) 

-k, w2 w: w,(k, w: -c) k,w,w,w, -w,l(k, + l)lu 
+k, WI ~41 

w,(k, w: -P wz(3c( - k, 4, w& - k, 4, k, w;‘i44 + P) 
+w,(h w: --PI 

kwww I 2 3 4 w& - k, w:, ~4 - k, w:) ~2 w,(k, w; ‘P 
+k WA 

-wdk, + lk k,w;‘44 +~u) wz w,& w; ‘P -w,lw,W,w;‘fi 
+k, ~1 w,l +wAk, w: -PI Sk, w,) +k, w,) - W, - 

Similarly the Jacobian f i s -f ‘, takes the form f ‘, = -p“-‘~;~ * I?’ where 

/ 

-k, w3 w: k, ~2 wx w, 

hw*w,w, w,ti - k 4, 

w,(k, w: -PI WA- 4 w:, 

-w,[& + 1k w,w,(k,w;‘~ 
+k,w,w,l +k, 4 

w,(k, w: -PC) 

w&-k, 4) 

wd3~ - k, w:) 

k, w;‘P(w: + 11 
+w,(k, w: --PI 

-w,[(k, + 1& 
+k, ~1 w,l 

wz w,(k, w; ‘P 
+k w,) 

k, w;‘dw: + ~1 
+w,(k, w: -PI 

-w,[w,P,w;‘fi 
+k, w,)- k,(k, - 1)w;*fi2j 1. 

(2.17b) 
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Homogeneity property (2.15) of f”(u) and fY(u) implies 
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f ;u = q-“(v); f ;v = sfY(u). (2.18) 

For CI = 1 - 2y, we have s = 1 in (2. Mb) and (2.18) implies that f f u =f”(u), f iv = 
f y(u). This property may be used in constructing upwind differencing schemes (see 
[ 5, 91). We remark that a = 1 - 2y < 0 and therefore u, is not positive definite; 
however, the mapping u -+ v is one-to-one. 

We note that for a = 1 - 2y, we have k, = 0 in (2.16), which results in a great 
simplification in (2.17): 

f t = -pwi3 a gx where 

0 -W: 0 -@2 + l)w*w4 

jp= 
-W: 3w, w4 w3 w4 k2(4 + P) - Wl w4 

0 w3 w4 w2 w4 k2w2w3 

-ck2 + ‘1 w2 w4 k,(w:+/+w,w, k,wzw, -k,w,[2w,-(k,-l)~lw,l 

(2.19a) 

f; = -pwi3 a By where 

0 0 -W: 44 + 1) ~3~4 

jp= 
0 w3 w4 w2 w4 k, ~2 ~3 

-W: w2 w4 3w3 w4 k,(w: + P) - WI ~4’4 

-(k2 + 1) w3w4 k,w,w, k,(w: +p) -w1w4 -k2w3[2w, - (k, - l)dw41 1 
(2.19b) 

Here k,=- 1 -y/(7- 1). 
For a = y > 0, we have k, = 0 in (2.16); thus (2.17) becomes 

f t = -p,u-‘w;’ . I? where 

-k, w2 w: wdk w: - cr) k, ~2 ~3 ~4 -wzol + k, w, ~4) 

8x= 
w4(k w: - PU) -w2W, 4 - 3~) -wdk, w: -PI w,W, w: -PI 

k,w,w,w, -wAk w: -PI -w,(k, w: -PI k, WI ~2 ~3 

-wzol + k ~1~4) w ,(k w: - PU) k,w,w,w, -k, w;w, 1 
(2.20a) 
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f E = -p,u-‘w;’ . By where 

[ 

-k, w3 w: k, w2 w3 w4 w&, w: -PI -w3cU + k, WI ~4) 

By= 
k ~2 ~3 ~4 wh- k $1 -wz(k, w: - PU) k, w, ~2 ~3 

w,W, w: -cl> -wz(k, w: - PU) -w&w: - 3~) w,(k, w: -P) 

-w301+ k, w, ~4) kl Wl wz w3 w,(k, w: -P> -k, w;w3 I 
(2.20b) 

Here k, = l/y - 2. 

3. VISCOSITY TERMS 

In this section, we consider the viscosity terms in the compressible Navier-Stokes 
equations 

ut + [f”(u)lx + [f’(~)l, =; QYu, ux, uy) + $ Qyh u,, uy>, (3.1) 

where u,f”(u), andfY(U) are the same as in Section 2, and 

[QxlT = {O, A@,, + qzy) + &4,x, Aqz, + q,y)v ,uqz(q,y + qzx) 

+ h(4,x + qzy) + 2c14141xl; 

[Q’l’ = {04q,, + qzxh %,.x + qzy) + &%y+q,(qz, + %y) 

+ hz(q,x + q*y) + 3w2, 1; 

(3.2a) 

(3.2b) 

as before, q, = u2/u, and q2 = u3/u1 are the velocity components in the x and y 
directions, respectively. 

Expressing q, and q2 as a function of u in (2.1 l), we get 

41= --v2/u4 7 92 = - v,/v, Y 

and 

41x = v;2(-04u2x + v2”4x)Y 42x = %2(-y4y3x + U3~4A 

qly = v,2(-v4 O2y + u2 u4y)P q2y = G’b4 u3y + v3 04y)’ 

(3.3a) 

(3.3b) 

Substituting qix, qiy, i = 1, 2 in (3.2) by (3.3), we rewrite (3.2) as 

Qx = P(u) v, + RXY(u) vy, 

Qy = R yy(u) u, + R y”(v) u,, 

(3.4a) 

(3.4b) 



where 

RXX(U) = VT3 

RYY(u) = IIT3 
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0 -pu4' 0 PV2 u4 

0 0 -(A + &)4 (A + &) v3v4 

0 ,UU2V4 (A + 2/J) 03 04 -(A + 2P) u: -W: 

r 00 0 
0 0 

R-yu) = UT3 
Au3 v4 

0 -pv: 0 ~v2v4 

RYX(V) = v; 

1 0 /dY304 Av,v, -@ +iu)v3v4 

00 0 0 

0 0 3 -34 w3 04 

0 4: 0 Av2v4 

0 h,u, /‘tr,v, -@ +~c1)“3u, 
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3 (3.5a) 

7 (3.5b) 

(3.6a) 

(3.6b) 

We observe that Rxx and Ryy are symmetric nonnegative matrices (note that v4 < 0 
by definition). Matrices RXY and Ryx are not symmetric, except in the nonphysical 
case A= ,u; however, Rxy + Ryx is symmetric, in agreement with [ 11. 

4. SUMMARY 

In this paper we have described a symmetric form of systems of conservation laws 
with entropy. This symmetric form retains the conservation properties of the 
equations; consequently, weak solutions remain unchanged. In Section 2 we have 
presented specific symmetric forms of the Euler equations of gas dynamics. Some of 
these forms are surprisingly simple and therefore are computationally attractive. 

We feel that this extra richness of structure is an important feature to be utilized in 
both the analysis and the numerical approximation of weak solutions of systems of 
conservation laws with entropy. 

Of particular computational interest is the possibility of using the symmetric form 
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(1.6a) to calculate steady state solutions of (1.1). Here, the term u,uI vanishes, and 
the numerical approximation becomes an iteration method for solutions of the spatial 
part of (1.6a). The symmetry of the matrix coeffkients may provide a way to achieve 
faster convergence to steady state solutions in this case. 

REFERENCES 

1. S. ABARBANEL AND D. GOWLIEB, J. Compuc. Whys. 41, (1) (1981), 1. 
2. S. K. GODUNCIV, DAN. USSR 139 (3) (1961), 521. 
3. K. 0. FRIEDRICHS AND P. D. LAX, Proc. Nat. Acad. Sci. USA, 68, (1971), 1686. 
4. A. HARTEN AND P. D. LAX, SZAMJ. Numer. Anal. 18, (2) (1981), 289. 
5. A. HARTEN, P. D. LAX AND B. VAN LEER, SIAM Rev., to appear. 
6. M. S. MOCK, “Systems of Conservation Laws of Mixed Type,” to appear. 
7. P. L. ROE, in “Proceeding, 7th Intl. Conf. Numer. Meth. Fluid Dynamics,” (W. C. Reynolds and R. 

W. MacCormack, eds.), Springer-Verlag, Berlin/New York (1981), 354. 
8. P. L. ROE, J. Comput. Phys. 43 (1981), 357. 
9. J. L. STEGER AND R. F. WARMING, “Flux Vector Splitting of the Inviscid Gas Dynamics Equations 

with Applications to Finite Difference Methods,” NASA TM-78605, July 1979. 


